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Introduction

Introduction

m QCD factorization theorem for Deeply Virtual Compton
Scattering (DVCS) and for Deep Exclusive Meson
Electroproduction (DEMP) on any hadronic target —
universal Generalized Parton Distributions (GPDs)
of the target

m GPDs interpolate between elastic FFs and PDFs

m GPDs contain information on 3D distributions and
correlations of partons in the target
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Introduction (2)

Introduction

Three roles of DVCS and DEMP on nuclear targets:
m To give information on GPDs of the nucleon complimentary to
experiments on H

m To access novel nuclear effects not present in DIS and in
elastic scattering on nuclear targets

m To test theoretical models of the nuclear structure:
m relativistic effects
® non-nucleonic degree of freedom
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Neutron GPDs from nuclear DVCS

DVCS on nuclei at large t — nucleon (neutron) GPDs

Neutron GPDs

T m coherent ®m incoherent
m dominates at small t m dominates at large t
y
y 0
a !
A-l
A A A

Both coherent and incoherent are present at all t.
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Neutron GPDs from nuclear DVCS (2)

Generic situation: A(t) = (A*| 7 J, el & |A)

do
Neutron GPDs _
from nuclear dt
DvCs A .
o DAY I e ETATYAT D Je A A|ZJTJ SCRAIPN
A* j i
A
= A|Zm. DAY+ (A3 3lA)
i# i
do do
~ AA-1DFA(t)=—+A—
( )Fa(t’) T

Frankfurt, Miller, Strikman, Phys. Rev. D 65 (2002) 094015
m FA(t) is the nuclear form factor (FA(0) = 1)
m t' = t;A; (the center of mass effect)
m indistinguishable nucleons
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Neutron GPDs from nuclear DVCS (3)

DVCS cross section (on the photon level, integrated over ¢)

Neutron GPDs

f {
oves dopvcs ma®X3
dt Q41+ ¢?

- [A(A = DFR()Hnya(Ens I + Z [Hp(En, )7 + NHa(én, )]

DVCS beam-spin asymmetry A

(A~ 1)Z F2(t')ATy/a + Z ATy + N AT,
Z(Z —1)F2(t")Teun/a + Z Tarp + N Tonn + - -

Aw(¢) =
Guzey, Strikman, Phys. Rev. C 68 (2002) 015204
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Neutron GPDs from nuclear DVCS (4)

Neutron GPDs DVCS cross section (Q? = 3 GeV?, xg = 0.2)

from nuclear
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Prelim. HERMES data

Rario A4, /AR (METHOD 1)

- HERMES PRELIMINARY
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Neutron GPDs from nuclear DVCS (5)

DVCS beam-spin asymmetry A ;(¢) (E = 6 GeV, Q? = 2 GeV?,
Neutron GPDs

from nuclear XB == 02)
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Non-nucleonic degrees of freedom in nuclear
DVCS

m The matrix element of the energy-momentum tensor (any
theory with a Lagrangian) between nuclear states (spin-0)
in the spirit of X.D.Ji, Phys.Rev.D55, 7114 (1997)

Non-nucleonic
degrees of

T Al RY 1 N4 7
recearoics (PAIT"(0)lPa) = M2(1)PAPA + gd (1) (A" A" — g A%)

m In QCD, M, (t) and d(t) are related to nuclear GPDs

1
/ dx xHI(x, &,1) = MJ/A(t) + ggzdg(t)
0

[ | MS/A(t = 0) momentum fraction of the target carried by the quark
m d, so-called D-term
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Non-nucleonic degrees of freedom (2)

®m In the Breitframe att =0

M 0j
d(t = O) = ——2A /dgr(r,-rk — —ék r2)TJ-k
Non-nucleonic

degrees of
freedom in

fuclearbves m Calculation in the simple liquid-drop model of the nucleus
M.Polyakov, Phys.Lett.B555, 57 (2003)

3.8
da(0) = —0.2A7/3(1 + m)

m The A-dependence is faster than expected A?
m ltis a nuclear surface effect

m Related to the distribution of the shear forces in the nucleus
(i # j of Ty work)
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Non-nucleonic degrees of freedom (3)

m Explicit numerical calculation in the Walecka model
(nucleons N, vector field V, scalar field ¢)
V.G. and M.Siddikov, J.Phys.G32, 251 (2006)

Non-nucleonic
degrees of
freedom in
nuclear DVCS

i m da(0) is dominated by ¢
meson

i m Fitda(0) = —0.3A%%6

- m Consistent with the

_ liquid-drop model
calculation

da(0) = —0.2A7/3(1 + 38

-da(0)

m Possibility to study meson degrees of freedom thought
A-dependence of DVCS observables (d, enters the real part
of the DVCS amplitude) of DVCS
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Non-nucleonic degrees of freedom (4)

Distribution of pressure inside Distribution of D-term inside the
the nucleus nucleus
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m Attractive ¢ meson contribution makes da(0) < 0

m This is the same mechanism as in yQSM, K.Goeke et al.,
hep-ph/0702030 (2007)

m da(0) < 0 seems to be a general feature of any
field-theoretical model
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Non-nucleonic degrees of freedom (5)

m Convolution approximation for nuclear GPDs and Walecka
model for the distribution of N, V and ¢
V.G. and M.Siddikov, J.Phys.G32, 251 (2006)
m Ratio of DVCS asymmetries
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Theoretical challenges of nuclear DVCS

m Current approach to modeling nuclear GPDs: convolution of
nucleon GPDs with the generalized distribution of nucleons

m The convolution approximation takes into account only
graphs aand b

Theoretical
challenges of
nuclear DVCS

] b Db 1] i}

L,

{a) (h) i)

F. Cano and B. Pire, Eur. Phys. J. A 19, 423 (2004)

m Neglect of graph c leads to (numerically small) violation of
polynomiality (related to Lorentz invariance)

m It is a theoretical challenge to restore polynomiality for
nuclear GPDs!
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Conclusions

Three roles of DVCS and DEMP on nuclear targets:

m To give information on GPDs of the neutron

m To access novel nuclear effects through the real part of the
nuclear DVCS amplitude

Conclusions m To test theoretical models of the nuclear structure:

m relativistic effects
® non-nucleonic degree of freedom

m nuclear shadowing and antishadowing
(A. Freund and M. Strikman, Eur. Phys. J. C 33, 53 (2004);

Phys. Rev. C 69, 015203 (2004))
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